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Abstract— The propagation and conpling properties of inte-
grated optical wavegnides are analyzed by means of the electric
field integral equation approach. The kernel of the integral

equation is the Green’s function of a two-layered med]um. The
Grderkin’s method is then employed to solve the integral equation
numerically. The set of basis and test functions consists of entire
domain plane wave functions. Fast convergence and superior

accuracy are the advantages of the chosen set of basis and test
functions. The method is used to compute the propagation and

coupling properties of several structures. Very good agreement

is observed with previously published results. Field distributions

of several coupled mode structures, such as the symmetrical and
asymmetrical coupler are also investigated and presented. Fhmlly,

the same method is used to produce the field distribution of
waveguides having more complex cross section like the trape-
zoidal waveguide.

I. INTRODUCTION

T HE evolution of the integrated optical circuits technology

has increased the need for accurate analysis and design

methods of complex dielectric structures. Approximate meth-

ods can be valuable tools when high accuracy is not required.

Two examples of such methods are Marcatili’s method [1]

and the effective index method [2]–[4]. When high precision

results are necessary, it is crucial to use more sophisticated

numerical methods.

A paper that reviews such methods, until 1985, has been

published by Saad [5]. The most popular methods are the

mode matching [6]–[12], the finite element [13]–[ 19], the

finite difference [20], [21] and the methods based on integral

equations [22]–[29]. In order to discretise the continuous

spectrum and make the modes countable, some of the mode

matching techniques introduce fictitious electric or magnetic

walls [7]–[9]. The finite difference and finite element methods

are versatile regarding the shape of the waveguiding structure

but usually require the definition of boundary walls on which

“artificial” absorbing boundary conditions are implemented.

They also need a large number of unknowns. In the earlier

finite element methods the presence of spurious modes was

a serious drawback [13]–[17]. More recent formulations that

use the Hz — Hy or E= — Ey formulation eliminate this
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problem [ 18]–[1 9]. Finally, the integral equation methods can

be divided into the domain [22]–[28] and the surface integral

techniques [29].

The integral equation approach has the advantage that it

rigorously takes into account the radiation conditions, of the

open structure, and therefore it is not necessary to implement

absorbing boundary conditions. The domain integral method

considers the unknown field inside the waveguides as an

equivalent polarization source. The electric field inside the

waveguides satisfies the Fredholm equation of the second kind.

The kernel of the integral equation is the Green’s dyadic func-

tion of the embedding. This approach inherently predicts all

the possible properties of the embedding like radiation, leakage

effects [22], [23], [25], anisotropy, stratification [24]–[28], etc.,

through Green’s function.

In this paper, an electric field integral equation method for

modeling waveguides in a two-layered isotropic medium is

presented. The method is applicable for any number of parallel

waveguides arbitrarily positioned inside and/or outside the

substrate. The cross section of the waveguides is considered

to be rectangular. In order to transform the system of integral

equations to a linear matrix system the method of moments has

been employed. A distinct difference of the present method is

the set of basis and test functions that is used to describe the

unknown field. The usual approach is to apply the collocation

method (point matching) or a similar subdomain method [22],

[24]-[27]. The collocation method is versatile and easy to

implement but it presents two serious drawbacks. The first,

which is common to all subdomain methods, is the large

number of unknowns and therefore the large required memory,

CPU time and possible numerical instabilities. The second

problem is the creation of fictitious charges and currents on

the boundaries of the subdomains due to the discontinuous

variation of the electromagnetic field. Both problems can be

sufficiently confronted if one uses entire domain functions to

describe the field. In the present approach the field inside each

waveguide is described as superposition of plane waves. Since

this is a very “natural” description, the method converges

rapidly and the size of the system’s matrix is relatively

small. Therefore economy in computer memory and CPU

time is achieved. Propagation constants, field distributions and

coupling properties are numerically computed. Convergence

is checked by successively increasing the number of test

functions. Since there are no theoretical constraints about the
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number, the size and the distance between the waveguides, it

is feasible, using the same code, to model simple waveguides,

symmetrical or asymmetrical couplers and waveguides having

more complicated cross section.

The theoretical analysis of the approach is presented in

Section H. The basic steps are the formulation of the sys-

tem of integral equations, the calculation of Green’s dyadic

function and the description of the electric field inside each

waveguide. In Section III the numerical solution is presented,

i.e., Galerkin’s method as applied to the specific problem.

Section IV is devoted to the presentation of the numerical

results, Finally, conclusions are given in Section V.

II. THEORETICAL ANALYSIS

The geometry of the analyzed structure is shown in Fig. 1.

The embedding consists of a two-layered medium, namely

the substrate (region Vl) and the cover (region Vo). Inside

the embedding there are N waveguides (regions V2)Z,z =

1,2, ..., IV) of rectangular cross section. The structure is non

symmetrical and the distance between the boundaries of the

waveguides can vary from zero to infinity. The materials of

the regions V., V1, V2 are considered homogeneous, isotropic

and lossless with real refractive indexes no, nl, nz. The har-

monic time factor is assumed to be exp( –jut) and will be

suppressed throughout this analysis. In the absence of incident
field (excitation) the electric fieldll(r) (the underbar denotes

vectors) satisfies the homogeneous Fredholm equation of the

second kind

qr) =
///

C(Lc’) “ (k2(L-’)– k~(l!))gz(?l’)d?y,
v.

~Evm (1)

{

‘n@, z’ G vi
k(z’)=;. ‘n~, C’EV1 (2)

nz, ~’ G Vz

Icn(r’) = ; .
{

no, y’>o
(3)

n~, y’ <0

where A. is the wavelength in vacuum and ~(~, ~’) (the dou-

blebar denotes dyadics) is the electric Green’s dyadic function

of the embedding. In the space of generalized functions the

singularities of the source point are inherently contained in

the electric Green’s dyadic function [30], [31].
The next step of the analysis is to write the Green’s dyadic

function. Since the waveguides can be placed everywhere,

then the vertical coordinate of I’ can vary from minus to plus

infinity (—cc < y’ < cm). In the literature the usual expressions

for Green’s function assume that the source point is located

either in the substrate or in the cover. In this analysis it

is advantageous to derive a unified expression for Green’s

function that will describe the impulse response of the system

when – m < y’ < cc. It is first assumed, that the source point

is located inside the substrate (~’ < O), and then the spectral

representation of Green’s function is calculated. Next the

source is positioned in the cover (y’ > O). Finally, a unified

Fig. 1. General structure for integral equation analysis.

expression for –cc < y’ < cc is derived

{

Go(z)?)+G1(Z, L-’), y.y’ >0
@, L-’)= ~2(c, L-’),

yy ’<o

—(x<y’ <cc (4)

where Go (c, L’) is the primary part G1 (c, z’), ~2 (E, c’) and

are the second~ parts and can be thought of as the reflected

and transmitted parts due to the boundary at y = O.

The spectral representation of ~“ (z, L’) is well known and

_ ~12 +m +03

H87r2 _w _W
#O(z-z’)go(hZ, hZ, y’, (y–Y’))

6+0+

dhz dhz – JC;26(C– C’)ijy (5)

go(h., hz, i> (Y – Y’)) = ;(~~: ‘hOhO). (6)

The d(~–~’) singular term arises naturally after performing the

j’~m dhg Fourier integration [35]. By doing so the principal
volume of integration becomes the “slice” y = g’ or its

equivalent “disc shaped pillbox” [33]–[35].

The vector ho is found to be

~o(y’) (Y – Y’)) = hz~ + hz~ + ~YOy>

hvo(y’, (y – y’)) =jS,U (7)

s(y – y’) = sign(y – y’) (8)

p(h., h., y’) =/lk~ – h$ – h;l

(9)
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The exponential variable Vo,l has been evaluated using the

Iimiting absorption principle, i.e., assuming that the materials

have infinitesimal small losses, Then the radiation conditions

are automatically satisfied [36]. The infinitesimal losses are

introduced through the e term which from now on, for brevity,

will be omitted.

Similarly, the unified expressions for cl, ~z are

1,..2 +m +w

Gl(z, !!) = @
Is

~~!k, z-ihz’ –~h.~’–sap!r

—co —cc

. gl(hz, h., y’) dhz (M= (lo)

~:2 +m +m

//

.z’–jhzz’–so#y’
GJC, Z’) = ~ _m _m

#2 z-j h

“ i72(LixL, y’) dhz cut.. (11)

The vectors ~1, ~2 are given by

b~(y’) = M + hzi + hgly, hgl(y’) = jsop (12)

h2(y’) = h.i + hz.2 + hyzj, hyz(y’) = –jso~– (13)

so(y’) = sign(y’) (14)

{
k:(~’) =~ “ :: ;::;

Jo
(15)

u’(hm, hz, y’) = I/k: – h: – h;l

{

. (e-j), lc:>h:+h:
(1-je), k$<h:+h:’

&+ o+.

(16)

The unknown dyadic functions ~1, 7j2 are found satisfying the

boundary conditions at y = O (Appendix A).

The following step is to determine the system of integral

equations. Since we are interested only in the propagating

modes, the electric field inside the z’th waveguide can be

assumed to have the following form

Qi(z) = e~pzgi(x, y), 1 E V2,i,

D >0, ~: propagation constant (17)

and its spectral representation is

where Gi(k%, kv ) is the Fourier transform of the electric field.

It is simple to verify that the above spectral representation

satisfies the following wave equation:

(v’ + k;)ll,(l) = o

when

which suggests writing k~, kg as

then the double Fourier transform (18) reduces to a single one

We can now form the system. Equation (1) can be written as

= ~(k; - k:(m))
m ///

(Go(c) 1’) + G1(?L Z’))

Vz, m

~%k’) df + ~(& - ~:(~)) /’// ~2(z>I’)
m v~,m

“Em k’) dl’

k.(m) s: .

{

no, if Vz,m is in the cover

nl, if V2,m is in the substrate.
(20)

In the first summation, index m is allowed to take only the

values of the indexes of those waveguides that are in the same

region with the z’tb waveguide, while in the second summation

m takes the remaining values. Substituting ~ (I, Z’ ) from

((5), (6)), ~l(z, E’) from (10), ~z(r, I!) from (11), ~i(~)
and Em(z) from (19) into (20) and performing the double

integration

it is found

}
“ %(~, Y) + ~{za”dx’, Y’)](X, Y)} =o (22)

m

where the symbols z~n [ ], z~n [ ] have been used for the
following integral operators:

L:[ ]=
‘::$::)L:dh.J/dXIdYI{e~hZ(z-zI)

sm

. [e-sp@-y’kjo(hz, /3, y’, (y - y’))

+ e–w@+i)gl(hz,E, Y’)[ l}> z G S~ (23a)

z~[]=‘Lx?L:dhd7d’’dy’e’
sm

. es@u-w/)g2(hz,~, Y’)[ ]>
c G S’i (23b)

6~~ denotes Kronecker’s symbol

{

~, = 1, i=m
am

O, i#m
(24)

and Si denotes the cross section of the i’th waveguide.

Writing (22) for i = 1,2,.. . , N a system of integral equa-

tions containing N unknowns, i.e., the field vectors ei(~, y) is

obtained. In the next section Galerkin’s method is applied to

numerically solve the above system.
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111, NUMERICAL SOLUTION

To numerically solve the system of integral equations

Galerkin’s method is employed. To achieve this, a set of

basis (test) functions for the description of the unknown

field, inside each waveguide, is chosen, Since description (19)

satisfies the wave equation it is reasonable that an approximate

form of (19) will be advantageous. To this end the integral

representation (19) of the unknown field in the rnth waveguide

is discretized as

(25a)

Gmir =Cm($h(z’))> 1’=1,2,. L (25b)

dk:(l) = k; –,@ Cos($bk(l’), 1’=1,2, ... L

Jkj(l’) = k; – f12 sin(~~(l’)), 1’=1,2,. ... L

(25c)

where q$~(1’) is the discrete spectral angle

#k(l’) = :(Z’- 1), 1’=1,2,. ... L. (26)

Therefore the set of basis functions consists of the plane waves

.f( (z’, y’) = ~~k~z’+jkjv’, 1’=1,2,..., L. (27)

In order to apply Galerkin’s method we choose as a set of

weighting functions

.f~(~, Y) = e~k”x+~kvy, 1=1,2, L (28a)

kz(l) = @ – /.?2Cos(qik(l)), 1=1,2,., L

ku(l) = ~kj – ~2 sin(fj$~(l)), 1=1,2,.., L.

(28b)

Substitution of (25) into (22) produces

L

E{x{
[

zfm[fwi, Y’)] (Z> Y) – C$,m I +
k;–k:(?n)..

k~(m)
YY

1’=1 m 1
L }“fv(~)Y) + ~{zm[w’, i)l(~, Y)} “cd = o

(29)

Finally, the method of moments [37], [38] is applied to the

above equation, using as a weighting function the one given

by (28)

(30)

The symbol (.,.) denotes the inner product of two scalar

functions. e.g.,

(zl%l@!Y’)l(L Y)> fl(~> Y))

where f* is the complex conjugate of f.
Until now the analysis is valid for arbitrarily shaped wave-

guides. If the cross section is rectangular, the double spatial

integration f Js, dx dy J Jsm dx’ dy’ can be performed

analytically (Appendix B). The infinite Fourier integrals that

remain are truncated and computed numerically using a mul-

tisegment quadratic Gaussian method of twelve points [39].

Convergence is checked by successively increasing the number

of segments and choosing a sufficiently large domain of

integration.

Writing (30) fori = 1,2,. c.N,l = 1,2,. .,L a linear

homogeneous system of N . L vector equations is formed.

The unknowns are the propagation constant and the vectors

cn~, , m = 1,2. ... N,1’ = 1,2,.. ., Inordertofindthehe

eigenvectors Cml, of a surface mode one has to search for

the roots of the determinant of the matrix of the system, i.e.,

/?: det [A] (/3) = 0, where [A](@) is the matrix of the system

and ~ is the propagation constant of the surface mode. Once

the vectors Gml, have been found the modal distribution in the

m’th waveguide is computed using (25).

IV. NUMERICAL RESULTS

A FORTRAN program that implements the previous full

vectorial analysis has been developed. Input data of this

program are the geometrical parameters of the structure, the

refractive indexes, and the wavelength in free space. The

program calculates the propagation constants and the modal

distributions of the existing surface modes. For the presen-

tation of the results the following annotations [1] have been

used:

Symbol v denotes the normalized frequency

(32)

where t is a typical dimension of the waveguides. Symbol b
denotes the normalized propagation constant

b = (P/~o)2 - d
O< b<l. (33)

n; — ‘n:

The first example considered is the channel waveguide

shown in Fig. 2. In the diagram of Fig. 2 are plotted the

dispersion curves of the Ej’l and E.jj modes. For comparison

results of the finite element method [18], finite difference

method [21 ] and effective index method have been included.

In Fig. 3 is shown the convergence of the propagation

constant of the E~l mode versus the number of test functions

for v = 1. Sufficient convergence (eventhough nonmonotonic)
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Fig. 2. Normalized propagation constant versus normalized frequency of a
channel waveguide. nO = 1, m = 1.45, TZZ= 1.5, w/t = 2.

Fig. 3. Convergence of the normalized propagation constant of the ~~1

mode. Normalized frequency v = 1.

is achieved using six or more test functions. If one uses nine

test functions the total scalar unknowns are 3 x 9 = 27 and

the evaluation of the system’s matrix requires the evaluation

of 272 elements. Remarkable property of the system’s matrix

is its high redundancy. In this example the redundancy is 70~o

which means 70% reduction of the execution time, Using a PC-

486 (DX4/100 MHz), four seconds are sufficient to calculate

the determinant of the matrix.

Fig. 4 depicts the power distribution of the E~l mode, i.e.,

tie main transverse component IEY 12 (uP), tie longi~dinal

component IEZ 12 (middle) and the weak component I13Z12

(down). In a similar fashion, Fig. 5 shows the power distri-

bution of the E~l mode. These plots are based on equation

(25) using nine test function (L = 9, N = 1). Baken et al.

[26] using the collocation method to solve a similar integral

equation problem, have reported that for a grid of 72 x 36 nodes

a result could only be obtained with a supercomputer (NEC

lEx~of EYII Mode

012345678910

Fig. 4. Power distribution of the EY~~ mode of the waveguide shown in

Fig. 2. IE912 component (up), ]E, 12 component (middle) and IE. 12com-
ponent (down). The amplitudes are normalized in order to give a maximum
vafue of 10 for each component. Normalized frequency v = 1.

SX-2) after 35 seconds, Excellent convergence of magnitude

and phase of the field has been verified. This is a very

important property of the method since there are methods

that, although achieve good convergence of the propagation

constant, present very slow convergence of the field [10].

Next, the symmetrical coupler shown in Fig, 6 is examined.

Coupling occurs between two pairs of modes. The first pair

contains the even distributions Ej&EN, ~&EN while the

second contains the odd ones 13~DD, 17~DD. ne redundancy

of the matrix is 73 Yo and the calculation time of a single

determinant is 14 seconds (L = 9, N = 2). In Fig. 6

are plotted the propagation constants of the four modes Vs
the spacing between the two channel waveguides. For large

spacing the even and odd modes approach the surface modes of

the single channel waveguide, marked with two little squares at

df t = 1.5. Also when d/t -0 the two waveguides become

equivalent to a single one of double width. On the vertical

axis at d/t = O four little squares mark the four lower modes

Ef~y, l?j~y of the single equivalent waveguide. We observe

that the E&Y~N modes tend to the E~~y modes, while the

E~~D modes tend to the Ej;g modes. From this figure it
is concluded that it is possible to calculate the properties of

a single waveguide by decomposing it into two (or more)

smaller ones. If we do so, we can decrease the number

of test functions (L) but the execution time will be “ N2
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Fig. 5. Power distribution of the E~’ mode of the waveguide shown in
Fig. 2. IEU \z component (up), I-E? 12 component (middle) and l-&12 com-

ponent (down). The amplitudes are normalized in order to give a maximum

value of 10 for each component. Normalized frequency v = 1.

time larger. In Fig, 7 is shown the power distribution of the

EgV~N and the E“ODD mode when the separation distance is

d/t = 0.8 and d/t = 0.1 (frequency v = 1). In Fig. 8 the

evolution of the coupling phenomenon over a coupling length

L. = (n/@EVEN – @oDD) is plotted. The Ej&EN and E~~~

modes have been excited with equal amplitude. The five plots

correspond to z = O,L.-4, LC/2, 3LC/4, Lc. At z = O the

input power in the right waveguide is – 0.22 dBm and in the

left is – 13 dBm. At z = L. the output power is – 13 dBm and

–0.22 dBm, respectively. The coupling length was found to be

Lc = 99.88~o (A. = 27r). Although a 100’%0power transfer

is achieved, there is always a noticeable amount of power

remaining in one of the two waveguides at z = O, z = L..
This due to the small separation distance (d/t = 0.1).

Next the asymmetrical coupler shown in Fig. 9 is con-

sidered. Similar devices have been proposed for coupling a

single-mode fiber to a thin-film waveguide [40]. Coupling

occurs between the two lower pairs of modes which we will

name E~$!~N and E~~D although, strictly speaking, they

are not characterized by complete (even and odd) symmetry

with respect to the X axis. The redundancy of the matrix

is S%%O and the calculation time of a single determinant is

20 seconds (L = 9). In Fig. 9 are plotted the propagation

constants of the four lower modes Vs the spacing between

the two channel waveguides. For large spacing the even and

odd modes approach the surface modes of the single rib

0.!$0

E’Il
s

g 0.45
~ ~Yi,

8

g 0.40-
.“#

&

Il.

“a
~

g

2$
— Two Coupled Wave@ideg

Sigle Wavegtide

0.25 ~
0.0 0.2 0.4 0.6 0.8 1.0 1.2 i .4

Spacifig (W)

Fig. 6. Normalized propagation constants of a symmetrical coupler Vs
separation distance. no = 1, nl = 1.45, nZ = 1.5, w/t = 2. The surface

modes of a single channel waveguide (w/t = 2) are marked with two little

squares at d/t = 1.5. The four little squares on the vertical axis at d/t = O
mark the four lower modes -E~~y, Ejiv of a single waveguide with w/t = 4.

Normalized frequency v = 1.

Fig. 7. Power distribution of even and odd modes of the symmetrical coupler
shown in Fig. 6. Separation distance is d/t = 0.8 (up) and d/t = 0.1 (down).
Norrrudized frequency v = 1.

waveguide (A) and the surface modes of the waveguide inside

an infinite homogeneous substrate (1?). The modes of the
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Power Distribution at z=O

Power Distribution at z==Lc/4

mm,,,,
Powor Distribuiio~ at z=LC/2

Power Distribution at z=3LC/4

,*,:

mm

Power Distribution at Z=L<.

v,mm
Cvt=o.1

3.
O32:4JSC,7-SC)1O

Fig. 8. Coupling phenomenon of the symmetrical coupler shown in Fig. 6

over a coupling length. Separation dktance is d/t = 0.1. The five plots
correspond to z = O, Lc/4, LCJ2, 3Lc/4, L,. Normalized frequency v = 1.

uncoupled waveguides (A) and (B) are marked with four

little squares at d/t = 1. Also, when d/t 4 0 the two

waveguides become equivalent to a single one, of aspect ratio

wlt = 1 which is semi-embedded in the substrate. So the

semi-embedded waveguide can be considered as a stack of

a rib and a channel waveguide. The propagation constants

of the four lower modes can be read on the vertical axis

at d/t = O. Fig. 10 depicts the dispersion curves of the

four lower modes of the asymmetrical coupler, while Fig. 11

shows the convergence of the propagation constant of the

EyODD mode VS fie number of test functions for u = 1.
Once again the very rapid convergence of the method is

verified.

In Fig. 12 the coupling phenomenon over a coupling

length is plotted. The E&N and E~DD modes have

been excited with equal amplitude. The separation distance

is d/t = 0.2 and v = 1. The five plots correspond to

z = O,L~/4, L~/2, 3L~.4, Le. At z = O the input power
in the upper waveguide is –O. 88 dBm and in the lower is

–7.4 dBm. At z = Lc the output power is – 13.6 dBm and

–0.55 dBm, respectively. The coupling length was found to
be Lc = 29.67Jo (Jo = 27r). It is observed that a 1007o

power transfer is not possible.

As a final example the electric field of a channel waveguide

having a trapezoidal cross section has been calculated. This

waveguide is considered to be equivalent to a stack of ten

smaller waveguides of rectangular cross section. The power

Fig. 9. Normalized propagation constants of an asymmetrical coupler Vs

separation distance. nO = 1, nl = 1.45, nz = 1.5, w/t = 2. Normalized
frequency v = 1. The modes of the uncoupled waveguides (A) and (B) are

marked with four little squares at d/t = 1.

M 1.0 1.5 2.0

Normalized Frequency (v)

Fig. 10. The normahzed propagation constants of the even and odd modes

of the asymmetrical coupler Vs normalized frequency. Separation distance
is dft = 0.2.

distribution of the fundamental mode \Ey 12 is shown in

Fig, 13.

V. CONCLUSION

An integri equation approach applied to the analysis of

rectangular integrated optical waveguides has been presented.

The embedding consists of a two layered isotropic and lossless

medium. Galerkin’s method is applied to solve the system of

integral equations. A distinct difference of the present method

is the use of entire domain test functions (plane waves) that

are derived from a rigorous integral representation of the

electric field, This results to a very rapid convergence and
great economy in the required computer memory and CPU

time. In the first example very good agreement with results of

other methods is observed, thus establishing the validity of the

present method. In the second and the third example coupling

properties of symmetrical and asymmetrical structures have

been investigated. Also it is shown how the same method can
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Fig. 11. Convergence of the normalized propagation constant of the
EYODD mode. Normalized frequency v = 1.

be used to analyze more complicated cross sections like the

semi-embedded waveguide and the waveguide of trapezoidal

cross section.

APPENDIX A

The dyadic functions ljl, ijz can be found applying the

boundary conditions at y = O

ix(Go+Gl)=jxc2 (Al)

ixvx(Go +Gl)=ilxvx G2 (A2)

and the Gauss condition for cl, C&:

v.~l=o, v.~2=o. (A3)

The above equations in combination with (5)–(17) give

j x (Lk: – lklho) =1) x (g2 – gl)w (A4)

jxhox I=ix(b2xg2–hlxgl); (A5)

hz. gl=o, lzz. gl=o. n (A6)

Power at z= L.,L2 Power at z==W’../4

Fig, 12. Coupling phenomenon of the asymmetrical coupler shown in Fig. 9,
over a coupling length. Separation distance is d/t = 0.2. The five plots
correspond ;O z-= O~Lc /4, ‘Lc / 2,3 Lc /4, Lc. Normalized frequency v “= 1.

The above equations form an algebraic system of eighteen

equations. Its solution gives the unknown dyadic functions

gl 7g2

7jo(hz,hz,7J’, y – y’)

-[

~ k; – h: –jhzps –h%hz
. –jhzps k~ + p2 –jhzps 1(A7)

; –hzhz –jhzps k: – h:

and (A8) and (A9), as shown at the bottom of the page.

1-
as

jhza2
ijl(hz, hz, y’) = — so

h~izas

1

~as – ~(h~3– k~)al

as
2jphz k:

gz(hz, h., Y’) = so

2?Z hzk;
L al

pal
jhzag

‘— so
aq

jhzalo—— so

2(k: +;z)k:(y’)

hzhza~

as
jhzaz sn

al “

~a7 + ~’(h2,z – k~)al

%z h, k;—
al

2jwhzk: sn

(A8)

(A9)
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lE..~ d IV,, Mode

Fig. 13. Power distribution (I Eu 12) of the J3~l mode of a chan-

nel waveguide with a trapezoidal cross section. Normalized frequency
‘o = l,mj = l,nl = 1.45, n~ = 1.5.

APPENDIX B

Here is presented the calculation of the inner products (31).

to (Xl, X2, C) denotes the following function:

#2c _ ~xlc

to(xl,xz,c) = ~ (Bl)

j(k: – hm))to(xl(z), xz(i), j(hm – kz))

. [2 + to(yl(m), y2(~), (j& - sop))

. tlJ(Yl(i), Y2(Z), (–jlig – Sow))

. gl(hx, /?, y’)]}. (B2)

The SCRIWcomponents [Z]vt, v, ~ = 1,2,3 of ~ are given by

[Zlv,c = [go(~m P> IY - Y’l)lv,e[alv,c. (B3)

The scalar components [Zi]v,g, v, & = 1,2,3 of Z are the

following integrals

{

1 if (v,&) = {(1, 1), (1,3),(2,2),

S.<(y – y’) = ~ign(y _ y,,
(3, 1), (3,3)}

if (v, ~) = {(1,2), (2,1),(2,3),(3,2)}.

(B5)

The calculation of [a]ve depends on the relative position of

the cross sections Si and Sm. For example if Y1(i) = Y1(m)

and Y2 (i) = Y2(m) then

– ‘O(Yl(~)~ Y2(i), (–jkv – #))e[~k;+PjY1(m)]

~kjl_ #o(Y1(i), Y2(Z), (-jk, + p))+~

. e(jk;-P)U(??l) – to(y~(i), Y2(i), j(~; – ~Y))l

. Sv&(–l) (B6)

similarly [z] ug(hz ) can be calculated for other relative posi-

tions of Si and Sm. The calculation of the following inner

products is straightforward
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. {ti)(x,(rn), xz(?n),j(k~ - h.))

. to(Xl(i), Xz(i), j(hm – kc))

. to(Yl(rn), Y2(rn), (jk; – Sofl))

. tt)(Yl(i), Y2(i), (–jkv + So#’))

. g2(hm, /3, y’)} (B7)

(A, fk) =~o(xl(d, x2(0,j(~i - ~m))

“ to(Yl(i), y2(i),.j(& – ~y)). (B8)
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