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Propagation and Coupling Properties of
Integrated Optical Waveguides—An
Integral Equation Formulation

Spyridon J. Polychronopoulos and Nikolaos K. Uzunoglu, Member, IEEE

Abstract— The propagation and coupling properties of inte-
grated optical waveguides are analyzed by means of the electric
field integral equation approach. The kernel of the integral
equation is the Green’s function of a two-layered medium. The
Galerkin’s method is then employed to solve the integral equation
numerically. The set of basis and test functions consists of entire
domain plane wave functions. Fast convergence and superior
accuracy are the advantages of the chosen set of basis and test
functions. The method is used to compute the propagation and
coupling properties of several structures. Very good agreement
is observed with previously published results. Field distributions
of several coupled mode structures, such as the symmetrical and
asymmetrical coupler are also investigated and presented. Finally,
the same method is used to produce the field distribution of
waveguides having more complex cross section like the trape-
zoidal waveguide.

I. INTRODUCTION

HE evolution of the integrated optical circuits technology

has increased the need for accurate analysis and design
methods of complex dielectric structures. Approximate meth-
ods can be valuable tools when high accuracy is not required.
Two examples of such methods are Marcatili’s method [1]
and the effective index method [2]-[4]. When high precision
results are necessary, it is crucial to use more sophisticated
numerical methods.

A paper that reviews such methods, until 1985, has been
published by Saad [5]. The most popular methods are the
mode matching [6]-[12], the finite element [13]-[19], the
finite difference [20], [21] and the methods based on integral
equations [22]-[29]. In order to discretise the continuous
spectrum and make the modes countable, some of the mode
matching techniques introduce fictitious electric or magnetic
walls [7]-[9]. The finite difference and finite element methods
are versatile regarding the shape of the waveguiding structure
but usually require the definition of boundary walls on which
“artificial” absorbing boundary conditions are implemented.
They also need a large number of unknowns. In the earlier
finite element methods the presence of spurious modes was
a serious drawback [13]-[17]. More recent formulations that
use the H, — H, or E, — E, formulation eliminate this
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problem [18]-[19]. Finally, the integral equation methods can
be divided into the domain [22]-[28] and the surface integral
techniques [29].

The integral equation approach has the advantage that it
rigorously takes into account the radiation conditions, of the
open structure, and therefore it is not necessary to implement
absorbing boundary conditions. The domain integral method
considers the unknown field inside the waveguides as an
equivalent polarization source. The electric field inside the
waveguides satisfies the Fredholm equation of the second kind.
The kernel of the integral equation is the Green’s dyadic func-
tion of the embedding. This approach inherently predicts all
the possible properties of the embedding like radiation, leakage
effects [22], [23], [25], anisotropy, stratification [24]-[28], etc.,
through Green’s function.

In this paper, an electric field integral equation method for
modeling waveguides in a two-layered isotropic medium is
presented. The method is applicable for any number of parallel
waveguides arbitrarily positioned inside and/or outside the
substrate. The cross section of the waveguides is considered
to be rectangular. In order to transform the system of integral
equations to a linear matrix system the method of moments has
been employed. A distinct difference of the present method is
the set of basis and test functions that is used to describe the
unknown field. The usual approach is to apply the collocation
method (point matching) or a similar subdomain method [22],
[24]-[27]. The collocation method is versatile and easy to
implement but it presents two serious drawbacks. The first,
which is common to all subdomain methods, is the large
number of unknowns and therefore the large required memory,
CPU time and possible numerical instabilities. The second
problem is the creation of fictitious charges and currents on
the boundaries of the subdomains due to the discontinuous
variation of the electromagnetic field. Both problems can be
sufficiently confronted if one uses entire domain functions to
describe the field. In the present approach the field inside each
waveguide is described as superposition of plane waves. Since
this is a very “natural” description, the method converges
rapidly and the size of the system’s matrix is relatively
small. Therefore economy in computer memory and CPU
time is achieved. Propagation constants, field distributions and
coupling properties are numerically computed. Convergence
is checked by successively increasing the number of test
functions. Since there are no theoretical constraints about the
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number, the size and the distance between the waveguides, it
is feasible, using the same code, to model simple waveguides,
symmetrical or asymmetrical couplers and waveguides having
more complicated cross section.

The theoretical analysis of the approach is presented in
Section 1I. The basic steps are the formulation of the sys-
tem of integral equations, the calculation of Green’s dyadic
function and the description of the electric field inside each
waveguide. In Section III the numerical solution is presented,
i.e., Galerkin’s method as applied to the specific problem.
Section IV is devoted to the presentation of the numerical
results. Finally, conclusions are given in Section V.

II. THEORETICAL ANALYSIS

The geometry of the analyzed structure is shown in Fig. 1.
The embedding consists of a two-layered medium, namely
the substrate (region V;) and the cover (region V). Inside
the embedding there are N waveguides (regions V5 ;,¢ =
1,2,---, N) of rectangular cross section. The structure is non
symmetrical and the distance between the boundaries of the
waveguides can vary from zero to infinity. The materials of
the regions Vp, Vi, V> are considered homogeneous, isotropic
and lossless with real refractive indexes ng,n1, no. The har-
monic time factor is assumed to be exp(—jwt) and will be
suppressed throughout this analysis. In the absence of incident
field (excitation) the electric field E(r) (the underbar denotes
vectors) satisfies the homogeneous Fredholm equation of the
second kind

VOO
r €V (1
'
9 ng, T €Wy
k(r') = A—W ni, r'eVy )
O A ne eV
2n [ n >0
N — 20 0, Y
() Ao {m, y' <0 ®

where A is the wavelength in vacuum and G(r,r’) (the dou-
blebar denotes dyadics) is the electric Green’s dyadic function
of the embedding. In the space of generalized functions the
singularities of the source point are inherently contained in
the electric Green’s dyadic function [30], [31].

The next step of the analysis is to write the Green’s dyadic
function. Since the waveguides can be placed everywhere,
then the vertical coordinate of ¢’ can vary from minus to plus
infinity (—oo < ¢/ < c0). In the literature the usual expressions
for Green’s function assume that the source point is located
either in the substrate or in the cover. In this analysis it
is advantageous to derive a unified expression for Green’s
function that will describe the impulse response of the system
when —oo < 7/ < oo. It is first assumed, that the source point
is located inside the substrate (y’ < 0), and then the spectral
representation of Green’s function is calculated. Next the
source is positioned in the cover (y' > 0). Finally, a unified

Fig. 1.

General structure for integral equation analysis.

expression for —oo <y’ < oo is derived

Gir oy = d Colrr') + Galr,1),
Q(_’— ) {QZ(L f/)v

— 00 <y < oo 4

y-y >0
y-y' <0

where G,(r,r’) is the primary part G,(r,7"),Gy(r,r') and
are the secondary parts and can be thought of as the reflected
and transmitted parts due to the boundary at y = 0.

The spectral representation of Gy(r,r’) is well known and
can be written as [32]

“+co “+o00 “+o0 s
B =g [ @k

e—0+
edh(z—r')
'Er7?:;@
E— +o00 “+o0 h (=
—SWQ / etto 0= (hy by, (y—y"))
e—>0+
dhy dhy — k?8(r — r')§9 (5)

Gylhor bt s (0= ) = @K ~ o). (©
The §(r—r') singular term arises naturally after performing the
/7 dh, Fourier integration [35]. By doing so the principal
volume of integration becomes the “slice” y = ¢ or its
equivalent “disc shaped pillbox” [33]-{35].

The vector hy, is found to be

holt/,(y —¥")) =ha + h2 + hyob,
hyo(v', (y — ¥')) =jsu 7
s(y —y') =sign(y — ') (8)
(hm’hz’y,) V |k721_ z_h’zl
_ 4 k2 2 2
{675 BIEDE o
9
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The exponential variable uo; has been evaluated using the
limiting absorption principle, i.e., assuming that the materials
have infinitesimal small losses. Then the radiation conditions
are automatically satisfied [36]. The infinitesimal losses are
introduced through the € term which from now on, for brevity,
will be omitted.

Similarly, the unified expressions for G,,G., are

J— +w +m -h 7 .h 1 7
—G—-l(ﬂ’—— 87T2 / / e] I Jhz oMY
g1 (hoyhzyy') dhy dh (10)

—+o0 o0
rai AN jhyr—jhex '—jh, 2" —souy’
Gy(r,r) = e
— —

-gz(hx,hz,y) dh, dh. (11)
The vectors hy, h, are given by
b)) =he® + ho2 + hy§, hp(y) =jsop  (12)
hZ(y/) = hmi' + hz:g + hyQﬁv hy?(yl) = _jSOM"‘ (13)
so(y') =sign(y') (14)
rrt 27 no, Yy <0
)= Y5 15)
ul(hm’hz’y,) = lkg - hg‘ - hgl
Jle=d), kZ>h; 4R +
{(1—je>, reniend 70
(16)

The unknown dyadic functions g g,,9, are found satisfying the
boundary conditions at y = 0 (Appendlx A).

The following step is to determine the system of integral
equations. Since we are interested only in the propagating
modes, the electric field inside the i’th waveguide can be
assumed to have the following form

-E-i (ﬂ) = ejﬂzgi ($7 y)7
p>0,

r eV,

(: propagation constant a7

and its spectral representation is

+oo +00 ) )
Ei(ﬁ) :e]ﬂz/ / Qi(kmky)e]kmm—wkyy dk, dky,
r €V, (18)

where ¢;(k, ky) is the Fourier transform of the electric field.
It is simple to verify that the above spectral representation
satisfies the following wave equation:

(V2 + k3)Ey(r) = 0
when
k2 + k2 =k3 - B°

which suggests writing k,, k, as

ko (¢r) =/ k3 — B2 cos(r),
ky(pr) =4/ k3 — B2 sin(¢r),

0L ¢ <2rm

then the double Fourier transform (18) reduces to a single one

27
Ei(r) = €iP7 / ci(pp)e?m==tik dp 1€ Vo (19)
0

We can now form the system. Equation (1) can be written as

E £)=mzi:1 / / G(r,r') - (K*(r)) — ki (' )E, (¢') dr’
= Dk - ki m) [[[ @)+ i)

Vo,m
E (') dr + Z (k2 — k2(m)) // G, (r.7)
VZ m
B (r') dr’
_ 27 [ mg, if Vo5, isin the cover
kn(m) = Xo {nl, if V3, is in the substrate. (20)

In the first summation, index m is allowed to take only the
values of the indexes of those waveguides that are in the same
region with the ’th waveguide, while in the second summation
m takes the remaining values. Substituting G,(r,r’) from
((5), 6), Gy(r,r') from (10), Gy(r,r’) from (11), E,(r)
and E, (r) from (19) into (20) and performing the double
integration

+00 +0o0
/ dhz/ dy e1(B—hz:)z F(h,) =2xF(B) @21

it is found
A 7o kz (m)
; {Lzm[gm(w 'Y )](-’I/'a y) 6 |:1 e —— ]{,‘2( )

: gm(m,m} + S e (@)} =0 (22)

where the symbols L[ |, Lo,

following integral operators:

[ ] have been used for the

A kZ ki(m) oo jhy(z—2")
Li.l]= “amRE () /_ dha / da’ dy {e7"=
e+ @=Yg (hy, B,y (y -v))

+e_s°“(y+y)91(hw,ﬁ,y) I}, res; (23a)

+B k2(m e Fhe(z—2')
Lim[]—m dhe //dx dy' e
,eso(ll/y Hy )_g_2(h:c7/3ay)[ ]a re€ Sz (23b)
8im denotes Kronecker’s symbol
1, i=m

and S; denotes the cross section of the i’th waveguide.

Writing (22) for ¢ = 1,2,---, N a system of integral equa-
tions containing N unknowns, i.e., the field vectors e;(z, ) is
obtained. In the next section Galerkin’s method is applied to
numerically solve the above system.
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III. NUMERICAL SOLUTION

To numerically solve the system of integral equations
Galerkin’s method is employed. To achieve this, a set of
basis (test) functions for the description of the unknown
field, inside each waveguide, is chosen. Since description (19)
satisfies the wave equation it is reasonable that an approximate
form of (19) will be advantageous. To this end the integral
representation (19) of the unknown field in the mth waveguide
is discretized as

(25a)

(25b)

KLY =/ k3 — 3% cos(ow(l'), '=1,2,---,L
ky(I') = /K% — Bsin(¢r(l')), '=1,2,---,L
(25¢)
where ¢ (I') is the discrete spectral angle
Bl =@, U=12 L @6

Therefore the set of basis functions consists of the plane waves

fl/(.’I},,y/) = ejk;z,+jk;y,7 I'= 172a"'7L' (27)
In order to apply Galerkin’s method we choose as a set of

weighting functions

fi(w,y) =efemtiboy =12, L (28a)
k-l'(l) = k%—ﬂ2COS(¢k(Z)), l= 172a"'7L
ky(l): \/ k%—ﬁ251n(¢k(l))7 l:1727“'7L'
(28b)
Substitution of (25) into (22) produces
SIS Tt o) - 5 [T BB
il Loy | JUAX Y )\, Y um |4 k2 (m) Yy

: fl/(iﬁ',y)} + Z{me[fl’(xlay/ﬂ(xay)}} T 0
" (29)

Finally, the method of moments [37], [38] is applied to the
above equation, using as a weighting function the one given
by (28)

)

3 {@:‘m[fy(xc V(). ful )

o [, Bk
kZ(m)
+ Z{(Z?m[fl/(xl,y/)](l’, y)vfl(mvy»}} CCp = 0.
" (30)

b [T+ ot e |

The symbol (-,-) denotes the inner product of two scalar
functions. e.g.,

Tl o @ ) (@w), filw,v)
_ / / AP Uy (@ o) i (2 y) do dy - (1)

S,

where f* is the complex conjugate of f.

Until now the analysis is valid for arbitrarily shaped wave-
guides. If the cross section is rectangular, the double spatial
integration [ [g dx dy [[s  dx’ dy' can be performed
analytically (Appendix B). The infinite Fourier integrals that
remain are truncated and computed numerically using a mul-
tisegment quadratic Gaussian method of twelve points [39].
Convergence is checked by successively increasing the number
of segments and choosing a sufficiently large domain of
integration.

Writing (30) for ¢ = 1,2,..-N,l = 1,2,---,L a linear
homogeneous system of N - L vector equations is formed.
The unknowns are the propagation constant and the vectors
Cmir,m = 1,2---, N, I’ = 1,2,---, L. In order to find the
eigenvectors ¢, of a surface mode one has to search for
the roots of the determinant of the matrix of the system, i.e.,
B: det[A](B) = 0. where [A](8) is the matrix of the system
and 3 is the propagation constant of the surface mode. Once
the vectors ¢,,,;; have been found the modal distribution in the
m’th waveguide is computed using (25).

IV. NUMERICAL RESULTS

A FORTRAN program that implements the previous full
vectorial analysis has been developed. Input data of this
program are the geometrical parameters of the structure, the
refractive indexes, and the wavelength in free space. The
program calculates the propagation constants and the modal
distributions of the existing surface modes. For the presen-
tation of the results the following annotations [1] have been
used:

Symbol v denotes the normalized frequency

kot [ a2

v = Ty — Ny

(32)

where ¢ is a typical dimension of the waveguides. Symbol b
denotes the normalized propagation constant

(B/ko)* — n}

ni—n? ’

b= O0<b<1. (33)

The first example considered is the channel waveguide
shown in Fig. 2. In the diagram of Fig. 2 are plotted the
dispersion curves of the EY; and Ej; modes. For comparison
results of the finite element method [18], finite difference
method [21] and effective index method have been included.

In Fig. 3 is shown the convergence of the propagation
constant of the EY, mode versus the number of test functions
for v = 1. Sufficient convergence (eventhough nonmonotonic)



POLYCHRONOPQULOS AND UZUNOGLU: PROPAGATION AND COUPLING PROPERTIES OF INTEGRATED OPTICAL WAVEGUIDES 645

n,~1

i Pressent Method
o Efective Index Method

& . Finite Elements Method
¢  PFinite Difference Method

—
05 10 15 20 .28 30
Normalized Frequency (v

¥ TEPYCTTTTTY Ty TTTTYTTeTY

Fig. 2. Normalized propagation constant versus normalized frequency of a
channel waveguide. ng = 1,y = 145,n; = L5, w/t = 2.

4 s & 7 8..9 10 T 12

Fig. 3. Convergence of the normalized propagation constant of the EY,
mode. Normalized frequency v = 1.

is achieved using six or more test functions. If one uses nine
test functions the total scalar unknowns are 3 X 9 = 27 and
the evaluation of the system’s matrix requires the evaluation
of 272 elements. Remarkable property of the system’s matrix
is its high redundancy. In this example the redundancy is 70%
which means 70% reduction of the execution time. Using a PC-
486 (DX4/100 MHz), four seconds are sufficient to calculate
the determinant of the matrix.

Fig. 4 depicts the power distribution of the E}; mode, i.e.,
the main transverse component |E,|? (up), the longitudinal
component |E,|?> (middle) and the weak component |F,|?
(down). In a similar fashion, Fig. 5 shows the power distri-
bution of the E3; mode. These plots are based on equation
(25) using nine test function (L = 9,N = 1). Baken et al.
[26] using the collocation method to solve a similar integral
equation problem, have reported that for a grid of 72x 36 nodes
a result could only be obtained with a supercomputer (NEC

[E.P of E¥,, Mode
y 3

[E,P of B, Mode

[E,F of E¥;, Mode

012345678910

Fig. 4. Power distribution of the EY;, mode of the waveguide shown in
Fig. 2. |Ey|? component (up), |E:|? component (middle) and |E.|* com-
ponent (down). The amplitudes are normalized in order to give a maximum
value of 10 for each component. Normalized frequency v = 1.

SX-2) after 35 seconds. Excellent convergence of magnitude
and phase of the field has been verified. This is a very
important property of the method since there are methods
that, although achieve good convergence of the propagation
constant, present very slow convergence of the field [10].
Next, the symmetrical coupler shown in Fig. 6 is examined.
Coupling occurs between two pairs of modes. The first pair
contains the even distributions E&ypy, Efygpy While the
second contains the odd ones E&pp, Edpp-. The redundancy
of the matrix is 73% and the calculation time of a' single
determinant is 14 seconds (L = 9,N = 2). In Fig. 6
are plotted the propagation constants of the four modes Vs
the spacing between the two channel waveguides. For large
spacing the even and odd modes approach the surface modes of
the single channel waveguide, marked with two little squares at
d/t = 1.5. Also when d/t — 0 the two waveguides become
equivalent to a single one of double width. On the vertical
axis at d/t = 0 four little squares mark the four lower modes
E¥, EgY of the single equivalent waveguide. We observe
that the EgYgy modes tend to the ET;¥ modes, while the
EgSn modes tend to the E5;¥ modes. From this figure it
is concluded that it is possible to calculate the properties of
a single waveguide by decomposing it into two (or more)
smaller ones. If we do so, we can decrease the number

of test functions (L) but the execution time will be ~N?
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[E,P of EY, Mode

[EP of EY,, Mode

[EF of EY,, Mode

L2 i

Fig. 5. Power distribution of the £Y; mode of the waveguide shown in
Fig. 2. |Ey|? component (up), |E,|? component (middle) and |E.|?> com-
ponent (down). The amplitudes are normalized in order to give a maximum
value of 10 for each component. Normalized frequency v = 1.

time larger. In Fig. 7 is shown the power distribution of the
Efy gy and the EEL, mode when the separation distance is
d/t = 0.8 and d/t = 0.1 (frequency v = 1). In Fig. 8 the
evolution of the coupling phenomenon over a coupling length
L.= (W/ﬂEVEN - ﬁODD) is plotted. The E]%VEN and E(y)DD
modes have been excited with equal amplitude. The five plots
correspond to z = 0,L./4,L./2,3L./4,L.. At z = O the
input power in the right waveguide is —0.22 dBm and in the
left is —13 dBm. At z = L, the output power is —13 dBm and
—0.22 dBm, respectively. The coupling length was found to be
L. = 99.88X0 (Ao = 2m). Although a 100% power transfer
is achieved, there is always a noticeable amount of power
remaining in one of the two waveguides at z = 0,z = L.
This due to the small separation distance (d/t = 0.1).

Next the asymmetrical coupler shown in Fig. 9 is con-
sidered. Similar devices have been proposed for coupling a
single-mode fiber to a thin-film waveguide [40]. Coupling
occurs between the two lower pairs of modes which we will
name ERypy and EGY, although, strictly speaking, they
are not characterized by complete (even and odd) symmetry
with respect to the X axis. The redundancy of the matrix
is 59% and the calculation time of a single determinant is
20 seconds (L = 9). In Fig. 9 are plotted the propagation
constants of the four lower modes Vs the spacing between
the two channel waveguides. For large spacing the even and
odd modes approach the surface modes of the single rib

Normalized Propagation Constant (b)

Two Coupled Waveguides
s Single Waveguide
0.25 TTTYY T LA S LI

00 02 04 06 08 1.0 1.2 1.4

Spacing (d/t)

Fig. 6. Normalized propagation constants of a symmetrical coupler Vs
separation distance. ng = 1,n1 = 145,ny = 1.5,w/¢ = 2. The surface
modes of a single channel waveguide (w/t = 2) are marked with two little
squares at d/t = 1.5. The four little squares on the vertical axis at d/t = 0
mark the four lower modes E7;¥, E5;Y of a single waveguide with w/t = 4.
Normalized frequency v = 1.

Fig. 7. Power distribution of even and odd modes of the symmetrical coupler
shown in Fig. 6. Separation distance is d/t = 0.8 (up) and d/t = 0.1 (down).
Normalized frequency v = 1.

waveguide (A) and the surface modes of the waveguide inside
an infinite homogeneous substrate (B). The modes of the
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Power Distribution at z=0

Power Distribution at z=L /4

Power Distribution at z=L /2

Power Distribution at z=3L /4

Power Distribution at z=L_

d/t=0.1

1

o d
G 2345678010

Fig. 8. Coupling phenomenon of the symmetrical coupler shown in Fig. 6
over a coupling length. Separation distance is d/t = 0.1. The five plots
correspond to z = 0, L. /4, L./2,3L./4, L.. Normalized frequency v = 1.

uncoupled waveguides (A) and (B) are marked with four
little squares at d/t = 1. Also, when d/t — 0 the two
waveguides become equivalent to a single one, of aspect ratio
w/t = 1 which is semi-embedded in the substrate. So the
semi-embedded waveguide can be considered as a stack of
a rib and a channel waveguide. The propagation constants
of the four lower modes can be read on the vertical axis
at d/t = 0. Fig. 10 depicts the dispersion curves of the
‘four lower modes of the asymmetrical coupler; while Fig. 11
shows the convergence of the propagation constant of the
E¢pp mode Vs the number of test functions for v = 1.
Once again the very rapid convergence of the method is
verified. ‘ :

In Fig. 12 the coupling phenomenon over a coupling
length is plotted. The Egypy and Efpp modes have
been excited with equal amplitude. The separation distance
is d/ft = 0.2 and v = 1. The five plots cotrespond to
z = 0,L./4,L./2,3L¢/4,L.. At z = O the input power
in the upper waveguide is —0.88 dBm and in the lower is
—7.4 dBm. At z = L. the output power is —13.6 dBm and
—0.55 dBm, respectively. The coupling length was found to
be L. = 29.67X¢ (Mo = 2m). It is observed that a 100%
power transfer is not possible. ;

As a final example the electric field of a channel waveguide
having a trapezoidal cross section has been calculated. This
waveguide is considered to be equivalent to a stack of ten
smaller waveguides of rectangular cross section. The power

,, g E’m Byn;(A)
—— Two Coupled Waveguides
s Sin;lé Waveguide
02 04 08 08’ 10
Spacing (d/t)

Fig. 9. Normalized propagation constants of an asymmetrical coupler V's
separation distance. no = 1,n; = 1.45,n2 = 1.5, w/t = 2. Normalized
frequency v = 1. The modes of the uncoupled waveguides (A) and (B) are
marked with four little squares at d/t = 1.

»;_,3,1;0
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Fig. 10. The normalized propagation constants of the even and odd modes
of the asymmetrical coupler Vs normalized frequency. Separation distance

Jis dft = 0.2, :

distribution of the fundamental mode |Ey? is shown in
Fig. 13.

V. CONCLUSION

An integral equation approach applied to the analysis of
rectangular integrated optical waveguides has been presented.
The embedding consists of a two layered isotropic and lossless
medium. Galerkin’s method is applied to solve the system of
integral equations. A distinct difference of the present method
is the use of entire domain test functions (plane waves) that
are derived from a rigorous integral representation of the
electric field. This results to a very rapid convergence and
great economy in the required computer memory and CPU
time. In the first example very good agreement with results of
other methods is observed, thus establishing the validity of the
present method. In the second and the third example coupling
properties of symmetrical and asymmetrical structures have
been investigated. Also it is shown how the same method can
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Fig. 11. Convergence of the normalized propagation constant of the
E¢, , pmode. Normalized frequency v = 1.

be used to analyze more complicated cross sections like the
semi-embedded waveguide and the waveguide of trapezoidal
Cross section.

APPENDIX A

The dyadic functions 9,,9, can be found applying the
boundary conditions at y = 0

§x (Go+G) =9 %G, (Al
IxVx(Gy+G)=9xVxGy (A2)
and the Gauss condition for G;,G,:

V.-G, =0, V.G,=0. (A3)

The above equations in combination with (5)-(17) give
§ x (1k;, — hoho) =4 x (g, — G, (Ad)
g}xﬁoxI:Ax(mxgz—@lxgl)kﬂz (AS)
hy g, =0, hy-g,=0. " e
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Power at z=0 Power at z=L /4

"‘Powyer at z= L./2 Power at z=3L /4

2 W

Fig. 12. Coupling phenomenon of the asymmetrical coupler shown in Fig. 9,
over a coupling length. Separation distance is d/t = 0.2. The five plots
correspond to z =0, L./4,L./2,3L./4, L.. Normalized frequency v = 1.

The above equations form an algebraic system of eighteen
equations. Its solution gives the unknown dyadic functions

91:9,
go(hm>hzay/’y - yl)

k?L - hi —jhzus —hzh,
== |—jheps k2 +u® —jhyus (A7)
H —hgh, —jhops k2 — R2

and (A8) and (A9), as shown at the bottom of the page.

[pas + M/(hi - ki)al jhzag hzh.ag
— s —
ag 2(13 5 0 as
_ 1 k: ih,
g,(hashoyy) = | 1202 g _ (¥ ey LIl (A8)
ai | Hay ai
_hgh,ag ~ jhzag . par + ' (h*z — k2)ay
L a3 a3 © as
[ pas — u(hﬁ - ki)al Jhza1g s 2hmhzk%
—E0 g _ZtwitEn
2jhak? 2K2 + W2)R2 () 2iphoh?
— xlvp n + n Zn
Gy(harhayy) = | 22T Y I g (A9)
ay ax a;
_2hzhzk72£ __jhzal()s uay — [J,/(hz - k,%)al
L al as 0 asz
ar = Pk} + pki? as = 'k}, — pk;?

az = p(p+ p)a

as = kﬁal - h§a4 ag = k

a7 = kial — h§a4 as
— l

Q9 = Gg + [t ay

a4 = 2/1416,,21 + as
non — (k5 + 1?)as

= pag — p'ay

G109 = ¢ — /L2CL1
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Fig. 13. Power distribution (|Ey|?) of the EY, mode of a chan-
nel waveguide with a trapezoidal cross section.. Normalized frequency
v=1ny =1,n = 145,np = 1.5.

APPENDIX B

Here is presented the calculation of the inner products (31). ]

to(X1, X9,C) denotes the following function:

eX2C _ XiC 21
X1, X =

tO( 1y A2y C) C

k3 — ki(m) [T

:—Z;r—k—i—————/ dh {to(Xl(m) Xz(m)

J(’fé — ha))to(X1(5), X2(5), j(he — ka))
- [A + to(Y1(m), Ya(m), (jk;, — sop))
-to(Y1(), Ya(d), (—jky — son))
'gl(hzyﬁ,y/)]}‘
The scalar components [Au¢, v,€ = 1,2,3 of A are given by
Ae = Gy her B ly =y Dhclihe. B9
1,2,3 of @ are the

B1)

4 [3]
(Li | frr], fo)
[4]

[5]

B2) 6]

7

[8]
The scalar components [al,¢,v,&

following integrals [9]
/Y2 (m)
Yi(m)

Yz(’b)
Vﬁ (hm) = /

Yi(5) 101

. ik —ikyy—ply—y'l g ey — y) (B4)
1 if (1,€) = {(1 1) (1,3),(2,2), th
sue(y —¢) = sien(y — o) b.(3.3)) [12]
if (Va 5) - {(1’ 2)’ (2’ 1)’ (2’3)’ (3’ 2)}
(B5) 1131

The calculation of (@], depends on the relative position of
the cross sections S; and S,,. For example if Y1 (%) = Y1(m)
and Y,(7) = Ya(m) then

1+ [to(Y1(3), Ya(4), 5 (ky — ky))
~ to(Y1(3), Ya(3), (—jky — p))eWkstmriim]
+ [to(Y1(2), Ya (i), (=ky + 1)

— ky))l
(B6)

[14]

[15]

(@ee(he) = 7 ,

17
1 (171
e
e(]k' —p#)Y2(m) — to(Y1(%), Y2(4), (
. 8”5(—1)

- [18]
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similarly [@l,¢(h.) can be calculated for other relative posi-
tions of S; and S,,. The calculation of the following inner
products is straightforward

= ka(m)
4rk2(m)
- {to(X1(m), Xa(m), j(k; — ha))
~to(X1(2), X2(4), j(he — k)
“to(Y1(m), Ya(m), (5K, — sou))
~to(Y1(3), Y2(4), (—5ky + sop”))

(Zgn[fl’]afl> = dhw

'gz(hm’ﬂa y/)} B7)
(fv, fi) = to(X1(3), Xa(2), 5(ky — k)
~to(Y1 (), Ya(i), (ky — ky)).  (BY)
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